Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding the peripheral capillary wave propagation during droplet impact is crucial for comprehending the physics of wetting onset and droplet fragmentation. Although Newtonian droplets have been extensively studied, we show how capillary waves deform non-Newtonian droplets in such a way that rheological features, such as the critical concentrations for the overlap (c*) and entangled polymer molecules (c**), may be directly obtained from the deformation history. Determining these critical concentrations is essential as they mark transitions in the rheological behavior of aqueous polymeric solutions, influencing viscosity, elasticity, and associated fluid dynamics. We have also compared capillary waves among Newtonian, shear-thinning, and Boger fluid droplets and found that although the fluid kinematics appear to be purely biaxial extensional flow, the infinite-shear properties of the droplets dominate the physics of capillary wave formation and propagation.more » « less
-
In many commercial applications, polymer–dye interactions are frequently encountered from food to wastewater treatment, and while shear rheology has been well characterized, the extensional properties are not well known. The extensional viscosity ηE and relaxation time λE are the extensional rheological parameters that provide valuable insights into how aqueous polymers respond during deformation, and this study investigated the effect of dyes on the extensional rheology of three different aqueous polymer solutions (e.g., anionic, cationic, and neutral) paired with two different dye salts (e.g., anionic and cationic) using drop pinch-off experiments. We have found that the influence of dyes on the pinch-off dynamics is complex but generally leads to a decrease in, for example, the apparent extensional relaxation time. We have utilized the dripping-onto-substrate method to probe the uniaxial deformation of widely used polymers such as xanthan gum (XG), poly(diallyldimethylammonium chloride) (PDADMAC), and poly(ethylene oxide) (PEO) as the anionic, cationic, and neutral polymers, respectively, paired with either fluorescein (Fl) or methylene blue (MB) as the anionic and cationic dyes, respectively. Polymer–dye pairs with opposite charges (e.g., XG–MB and PDADMAC–Fl) displayed a pronounced decrease in pinch-off times, but even PEO, which is a neutral polymer, resulted in decreased pinch-off times, which was restored by the addition of NaCl. The pinch-off times for the Boger fluid (mixture of poly(ethylene glycol) and PEO), however, were surprisingly uninfluenced by dyes. These results showed that not only did the small addition of dyes strongly decrease the polymer relaxation times, but the relative importance of the dye salts on the polymer pinch-off dynamics was also different from that of pure salts such as NaCl.more » « less
-
Air entrainment dynamics of aqueous polymeric droplets from dilute to semidilute unentangled regimesRecent studies have revealed the air-cushioning effect of droplet impact upon various surfaces and although pure water droplets have extensively been studied, the air entrainment dynamics for aqueous polymeric droplets was the focus of this study. Herein, droplets of low to moderate Weber numbers, [Formula: see text], displayed air film thickness gradients which was strongly influenced by the viscoelastic properties of the aqueous polymeric droplets in the dilute to the semidilute unentangled regimes. Aqueous polyethylene oxide droplets impacting a smooth thin oil film surface formed a submicrometer air layer, moments prior to impact, which was tracked by a high-speed total internal reflection microscopy technique. The radial changes in the air film thickness were related to the polymer concentration, thus providing an alternative tool for comparing the rheometer-derived overlap concentrations with a contactless optical technique.more » « less
An official website of the United States government
